from __future__ import division
from itertools import chain
from contextlib import contextmanager
import numpy as np
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D # noqa (For 3D plots)
from matplotlib import pyplot as plt
from matplotlib import gridspec, animation
import param
from ...core import (OrderedDict, HoloMap, AdjointLayout, NdLayout,
GridSpace, Element, CompositeOverlay, Empty,
Collator, GridMatrix, Layout)
from ...core.options import Store, Compositor, SkipRendering
from ...core.util import int_to_roman, int_to_alpha, basestring
from ..plot import (DimensionedPlot, GenericLayoutPlot, GenericCompositePlot,
GenericElementPlot)
from ..util import attach_streams
from .util import compute_ratios, fix_aspect
@contextmanager
def _rc_context(rcparams):
"""
Context manager that temporarily overrides the pyplot rcParams.
"""
old_rcparams = mpl.rcParams.copy()
mpl.rcParams.update(rcparams)
try:
yield
finally:
mpl.rcParams.clear()
mpl.rcParams.update(old_rcparams)
[docs]def mpl_rc_context(f):
"""
Decorator for MPLPlot methods applying the matplotlib rc params
in the plots fig_rcparams while when method is called.
"""
def wrapper(self, *args, **kwargs):
with _rc_context(self.fig_rcparams):
return f(self, *args, **kwargs)
return wrapper
[docs]class MPLPlot(DimensionedPlot):
"""
An MPLPlot object draws a matplotlib figure object when called or
indexed but can also return a matplotlib animation object as
appropriate. MPLPlots take element objects such as Image, Contours
or Points as inputs and plots them in the appropriate format using
matplotlib. As HoloMaps are supported, all plots support animation
via the anim() method.
"""
backend = 'matplotlib'
sideplots = {}
fig_alpha = param.Number(default=1.0, bounds=(0, 1), doc="""
Alpha of the overall figure background.""")
fig_bounds = param.NumericTuple(default=(0.15, 0.15, 0.85, 0.85),
doc="""
The bounds of the overall figure as a 4-tuple of the form
(left, bottom, right, top), defining the size of the border
around the subplots.""")
fig_inches = param.Parameter(default=4, doc="""
The overall matplotlib figure size in inches. May be set as
an integer in which case it will be used to autocompute a
size. Alternatively may be set with an explicit tuple or list,
in which case it will be applied directly after being scaled
by fig_size. If either the width or height is set to None,
it will be computed automatically.""")
fig_latex = param.Boolean(default=False, doc="""
Whether to use LaTeX text in the overall figure.""")
fig_rcparams = param.Dict(default={}, doc="""
matplotlib rc parameters to apply to the overall figure.""")
fig_size = param.Number(default=100., bounds=(1, None), doc="""
Size relative to the supplied overall fig_inches in percent.""")
initial_hooks = param.HookList(default=[], doc="""
Optional list of hooks called before plotting the data onto
the axis. The hook is passed the plot object and the displayed
object, other plotting handles can be accessed via plot.handles.""")
final_hooks = param.HookList(default=[], doc="""
Optional list of hooks called when finalizing an axis.
The hook is passed the plot object and the displayed
object, other plotting handles can be accessed via plot.handles.""")
finalize_hooks = param.HookList(default=[], doc="""
Optional list of hooks called when finalizing an axis.
The hook is passed the plot object and the displayed
object, other plotting handles can be accessed via plot.handles.""")
sublabel_format = param.String(default=None, allow_None=True, doc="""
Allows labeling the subaxes in each plot with various formatters
including {Alpha}, {alpha}, {numeric} and {roman}.""")
sublabel_position = param.NumericTuple(default=(-0.35, 0.85), doc="""
Position relative to the plot for placing the optional subfigure label.""")
sublabel_size = param.Number(default=18, doc="""
Size of optional subfigure label.""")
projection = param.Parameter(default=None, doc="""
The projection of the plot axis, default of None is equivalent to
2D plot, '3d' and 'polar' are also supported by matplotlib by default.
May also supply a custom projection that is either a matplotlib
projection type or implements the `_as_mpl_axes` method.""")
show_frame = param.Boolean(default=False, doc="""
Whether or not to show a complete frame around the plot.""")
_close_figures = True
def __init__(self, fig=None, axis=None, **params):
self._create_fig = True
super(MPLPlot, self).__init__(**params)
# List of handles to matplotlib objects for animation update
self.fig_scale = self.fig_size/100.
if isinstance(self.fig_inches, (tuple, list)):
self.fig_inches = [None if i is None else i*self.fig_scale
for i in self.fig_inches]
else:
self.fig_inches *= self.fig_scale
if self.fig_latex:
self.fig_rcparams['text.usetex'] = True
if self.renderer.interactive:
plt.ion()
self._close_figures = False
elif not self.renderer.notebook_context:
plt.ioff()
fig, axis = self._init_axis(fig, axis)
self.handles['fig'] = fig
self.handles['axis'] = axis
if self.final_hooks and self.finalize_hooks:
self.warning('Set either final_hooks or deprecated '
'finalize_hooks, not both.')
self.finalize_hooks = self.final_hooks
self.handles['bbox_extra_artists'] = []
@mpl_rc_context
def _init_axis(self, fig, axis):
"""
Return an axis which may need to be initialized from
a new figure.
"""
if not fig and self._create_fig:
fig = plt.figure()
l, b, r, t = self.fig_bounds
inches = self.fig_inches
fig.subplots_adjust(left=l, bottom=b, right=r, top=t)
fig.patch.set_alpha(self.fig_alpha)
if isinstance(inches, (tuple, list)):
inches = list(inches)
if inches[0] is None:
inches[0] = inches[1]
elif inches[1] is None:
inches[1] = inches[0]
fig.set_size_inches(list(inches))
else:
fig.set_size_inches([inches, inches])
axis = fig.add_subplot(111, projection=self.projection)
axis.set_aspect('auto')
return fig, axis
def _subplot_label(self, axis):
layout_num = self.layout_num if self.subplot else 1
if self.sublabel_format and not self.adjoined and layout_num > 0:
from matplotlib.offsetbox import AnchoredText
labels = {}
if '{Alpha}' in self.sublabel_format:
labels['Alpha'] = int_to_alpha(layout_num-1)
elif '{alpha}' in self.sublabel_format:
labels['alpha'] = int_to_alpha(layout_num-1, upper=False)
elif '{numeric}' in self.sublabel_format:
labels['numeric'] = self.layout_num
elif '{Roman}' in self.sublabel_format:
labels['Roman'] = int_to_roman(layout_num)
elif '{roman}' in self.sublabel_format:
labels['roman'] = int_to_roman(layout_num).lower()
at = AnchoredText(self.sublabel_format.format(**labels), loc=3,
bbox_to_anchor=self.sublabel_position, frameon=False,
prop=dict(size=self.sublabel_size, weight='bold'),
bbox_transform=axis.transAxes)
at.patch.set_visible(False)
axis.add_artist(at)
sublabel = at.txt.get_children()[0]
self.handles['sublabel'] = sublabel
self.handles['bbox_extra_artists'] += [sublabel]
def _finalize_axis(self, key):
"""
General method to finalize the axis and plot.
"""
if 'title' in self.handles:
self.handles['title'].set_visible(self.show_title)
self.drawn = True
if self.subplot:
return self.handles['axis']
else:
fig = self.handles['fig']
if not getattr(self, 'overlaid', False) and self._close_figures:
plt.close(fig)
return fig
@property
def state(self):
return self.handles['fig']
[docs] def anim(self, start=0, stop=None, fps=30):
"""
Method to return a matplotlib animation. The start and stop
frames may be specified as well as the fps.
"""
figure = self.state or self.initialize_plot()
anim = animation.FuncAnimation(figure, self.update_frame,
frames=self.keys,
interval = 1000.0/fps)
# Close the figure handle
if self._close_figures: plt.close(figure)
return anim
def update(self, key):
if len(self) == 1 and key == 0 and not self.drawn:
return self.initialize_plot()
return self.__getitem__(key)
[docs]class CompositePlot(GenericCompositePlot, MPLPlot):
"""
CompositePlot provides a baseclass for plots coordinate multiple
subplots to form a Layout.
"""
@mpl_rc_context
def update_frame(self, key, ranges=None):
ranges = self.compute_ranges(self.layout, key, ranges)
for subplot in self.subplots.values():
subplot.update_frame(key, ranges=ranges)
title = self._format_title(key) if self.show_title else ''
if 'title' in self.handles:
self.handles['title'].set_text(title)
else:
title = self.handles['axis'].set_title(title, **self._fontsize('title'))
self.handles['title'] = title
[docs]class GridPlot(CompositePlot):
"""
Plot a group of elements in a grid layout based on a GridSpace element
object.
"""
aspect = param.Parameter(default='equal', doc="""
Aspect ratios on GridPlot should be automatically determined.""")
padding = param.Number(default=0.1, doc="""
The amount of padding as a fraction of the total Grid size""")
shared_xaxis = param.Boolean(default=False, doc="""
If enabled the x-axes of the GridSpace will be drawn from the
objects inside the Grid rather than the GridSpace dimensions.""")
shared_yaxis = param.Boolean(default=False, doc="""
If enabled the x-axes of the GridSpace will be drawn from the
objects inside the Grid rather than the GridSpace dimensions.""")
show_legend = param.Boolean(default=False, doc="""
Legends add to much clutter in a grid and are disabled by default.""")
xaxis = param.ObjectSelector(default='bottom',
objects=['bottom', 'top', None], doc="""
Whether and where to display the xaxis, supported options are
'bottom', 'top' and None.""")
yaxis = param.ObjectSelector(default='left',
objects=['left', 'right', None], doc="""
Whether and where to display the yaxis, supported options are
'left', 'right' and None.""")
xrotation = param.Integer(default=0, bounds=(0, 360), doc="""
Rotation angle of the xticks.""")
yrotation = param.Integer(default=0, bounds=(0, 360), doc="""
Rotation angle of the yticks.""")
def __init__(self, layout, axis=None, create_axes=True, ranges=None,
layout_num=1, keys=None, **params):
if not isinstance(layout, GridSpace):
raise Exception("GridPlot only accepts GridSpace.")
super(GridPlot, self).__init__(layout, layout_num=layout_num,
ranges=ranges, keys=keys, **params)
# Compute ranges layoutwise
grid_kwargs = {}
if axis is not None:
bbox = axis.get_position()
l, b, w, h = bbox.x0, bbox.y0, bbox.width, bbox.height
grid_kwargs = {'left': l, 'right': l+w, 'bottom': b, 'top': b+h}
self.position = (l, b, w, h)
self.cols, self.rows = layout.shape
self.fig_inches = self._get_size()
self._layoutspec = gridspec.GridSpec(self.rows, self.cols, **grid_kwargs)
with mpl.rc_context(rc=self.fig_rcparams):
self.subplots, self.subaxes, self.layout = self._create_subplots(layout, axis,
ranges, create_axes)
if self.top_level:
self.comm = self.init_comm()
self.traverse(lambda x: setattr(x, 'comm', self.comm))
self.traverse(lambda x: attach_streams(self, x.hmap, 2),
[GenericElementPlot])
def _get_size(self):
max_dim = max(self.layout.shape)
# Reduce plot size as GridSpace gets larger
shape_factor = 1. / max_dim
# Expand small grids to a sensible viewing size
expand_factor = 1 + (max_dim - 1) * 0.1
scale_factor = expand_factor * shape_factor
cols, rows = self.layout.shape
if isinstance(self.fig_inches, (tuple, list)):
fig_inches = list(self.fig_inches)
if fig_inches[0] is None:
fig_inches[0] = fig_inches[1] * (cols/rows)
if fig_inches[1] is None:
fig_inches[1] = fig_inches[0] * (rows/cols)
return fig_inches
else:
fig_inches = (self.fig_inches,)*2
return (scale_factor * cols * fig_inches[0],
scale_factor * rows * fig_inches[1])
def _create_subplots(self, layout, axis, ranges, create_axes):
norm_opts = self._traverse_options(layout, 'norm', ['axiswise'], [Element])
axiswise = all(norm_opts['axiswise'])
if not ranges:
self.handles['fig'].set_size_inches(self.fig_inches)
subplots, subaxes = OrderedDict(), OrderedDict()
frame_ranges = self.compute_ranges(layout, None, ranges)
frame_ranges = OrderedDict([(key, self.compute_ranges(layout, key, frame_ranges))
for key in self.keys])
collapsed_layout = layout.clone(shared_data=False, id=layout.id)
r, c = (0, 0)
for coord in layout.keys(full_grid=True):
if not isinstance(coord, tuple): coord = (coord,)
view = layout.data.get(coord, None)
# Create subplot
if type(view) in (Layout, NdLayout):
raise SkipRendering("Cannot plot nested Layouts.")
if view is not None:
vtype = view.type if isinstance(view, HoloMap) else view.__class__
opts = self.lookup_options(view, 'plot').options
else:
vtype = None
# Create axes
kwargs = {}
if create_axes:
projection = self._get_projection(view) if vtype else None
subax = plt.subplot(self._layoutspec[r, c], projection=projection)
if not axiswise and self.shared_xaxis and self.xaxis is not None:
self.xaxis = 'top'
if not axiswise and self.shared_yaxis and self.yaxis is not None:
self.yaxis = 'right'
# Disable subplot axes depending on shared axis options
# and the position in the grid
if (self.shared_xaxis or self.shared_yaxis) and not axiswise:
if c == 0 and r != 0:
subax.xaxis.set_ticks_position('none')
kwargs['xaxis'] = 'bottom-bare'
if c != 0 and r == 0 and not layout.ndims == 1:
subax.yaxis.set_ticks_position('none')
kwargs['yaxis'] = 'left-bare'
if r != 0 and c != 0:
kwargs['xaxis'] = 'bottom-bare'
kwargs['yaxis'] = 'left-bare'
if not self.shared_xaxis:
kwargs['xaxis'] = 'bottom-bare'
if not self.shared_yaxis:
kwargs['yaxis'] = 'left-bare'
else:
kwargs['xaxis'] = 'bottom-bare'
kwargs['yaxis'] = 'left-bare'
subaxes[(r, c)] = subax
else:
subax = None
if vtype and issubclass(vtype, CompositeOverlay) and (c == self.cols - 1 and
r == self.rows//2):
kwargs['show_legend'] = self.show_legend
kwargs['legend_position'] = 'right'
if (not isinstance(self.layout, GridMatrix) and not
((c == self.cols//2 and r == 0) or
(c == 0 and r == self.rows//2))):
kwargs['labelled'] = []
# Create subplot
if view is not None:
params = dict(fig=self.handles['fig'], axis=subax,
dimensions=self.dimensions, show_title=False,
subplot=not create_axes, ranges=frame_ranges,
uniform=self.uniform, keys=self.keys,
show_legend=False, renderer=self.renderer)
plotting_class = Store.registry['matplotlib'][vtype]
subplot = plotting_class(view, **dict(opts, **dict(params, **kwargs)))
collapsed_layout[coord] = subplot.layout if isinstance(subplot, CompositePlot) else subplot.hmap
subplots[(r, c)] = subplot
elif subax is not None:
subax.set_visible(False)
if r != self.rows-1:
r += 1
else:
r = 0
c += 1
if create_axes:
self.handles['axis'] = self._layout_axis(layout, axis)
self._adjust_subplots(self.handles['axis'], subaxes)
return subplots, subaxes, collapsed_layout
@mpl_rc_context
def initialize_plot(self, ranges=None):
# Get the extent of the layout elements (not the whole layout)
key = self.keys[-1]
axis = self.handles['axis']
subplot_kwargs = dict()
ranges = self.compute_ranges(self.layout, key, ranges)
for subplot in self.subplots.values():
subplot.initialize_plot(ranges=ranges, **subplot_kwargs)
if self.show_title:
title = axis.set_title(self._format_title(key),
**self._fontsize('title'))
self.handles['title'] = title
self._readjust_axes(axis)
self.drawn = True
if self.subplot: return self.handles['axis']
if self._close_figures: plt.close(self.handles['fig'])
return self.handles['fig']
def _readjust_axes(self, axis):
if self.subplot:
axis.set_position(self.position)
if self.aspect == 'equal':
axis.set_aspect(float(self.rows)/self.cols)
self.handles['fig'].canvas.draw()
self._adjust_subplots(self.handles['axis'], self.subaxes)
def _layout_axis(self, layout, axis):
fig = self.handles['fig']
axkwargs = {'gid': str(self.position)} if axis else {}
layout_axis = fig.add_subplot(1,1,1, **axkwargs)
if axis:
axis.set_visible(False)
layout_axis.set_position(self.position)
layout_axis.patch.set_visible(False)
for ax, ax_obj in zip(['x', 'y'], [layout_axis.xaxis, layout_axis.yaxis]):
tick_fontsize = self._fontsize('%sticks' % ax,'labelsize', common=False)
if tick_fontsize: ax_obj.set_tick_params(**tick_fontsize)
# Set labels
layout_axis.set_xlabel(layout.kdims[0].pprint_label,
**self._fontsize('xlabel'))
if layout.ndims == 2:
layout_axis.set_ylabel(layout.kdims[1].pprint_label,
**self._fontsize('ylabel'))
# Compute and set x- and y-ticks
dims = layout.kdims
keys = layout.keys()
if layout.ndims == 1:
dim1_keys = keys
dim2_keys = [0]
layout_axis.get_yaxis().set_visible(False)
else:
dim1_keys, dim2_keys = zip(*keys)
layout_axis.set_ylabel(dims[1].pprint_label)
layout_axis.set_aspect(float(self.rows)/self.cols)
# Process ticks
plot_width = (1.0 - self.padding) / self.cols
border_width = self.padding / (self.cols-1) if self.cols > 1 else 0
xticks = [(plot_width/2)+(r*(plot_width+border_width)) for r in range(self.cols)]
plot_height = (1.0 - self.padding) / self.rows
border_height = self.padding / (self.rows-1) if layout.ndims > 1 else 0
yticks = [(plot_height/2)+(r*(plot_height+border_height)) for r in range(self.rows)]
layout_axis.set_xticks(xticks)
layout_axis.set_xticklabels([dims[0].pprint_value(l)
for l in sorted(set(dim1_keys))])
for tick in layout_axis.get_xticklabels():
tick.set_rotation(self.xrotation)
ydim = dims[1] if layout.ndims > 1 else None
layout_axis.set_yticks(yticks)
layout_axis.set_yticklabels([ydim.pprint_value(l) if ydim else ''
for l in sorted(set(dim2_keys))])
for tick in layout_axis.get_yticklabels():
tick.set_rotation(self.yrotation)
if not self.show_frame:
layout_axis.spines['right' if self.yaxis == 'left' else 'left'].set_visible(False)
layout_axis.spines['bottom' if self.xaxis == 'top' else 'top'].set_visible(False)
axis = layout_axis
if self.xaxis is not None:
axis.xaxis.set_ticks_position(self.xaxis)
axis.xaxis.set_label_position(self.xaxis)
else:
axis.xaxis.set_visible(False)
if self.yaxis is not None:
axis.yaxis.set_ticks_position(self.yaxis)
axis.yaxis.set_label_position(self.yaxis)
else:
axis.yaxis.set_visible(False)
for pos in ['left', 'right', 'top', 'bottom']:
axis.spines[pos].set_visible(False)
return layout_axis
def _adjust_subplots(self, axis, subaxes):
bbox = axis.get_position()
l, b, w, h = bbox.x0, bbox.y0, bbox.width, bbox.height
if self.padding:
width_padding = w/(1./self.padding)
height_padding = h/(1./self.padding)
else:
width_padding, height_padding = 0, 0
if self.cols == 1:
b_w = 0
else:
b_w = width_padding / (self.cols - 1)
if self.rows == 1:
b_h = 0
else:
b_h = height_padding / (self.rows - 1)
ax_w = (w - (width_padding if self.cols > 1 else 0)) / self.cols
ax_h = (h - (height_padding if self.rows > 1 else 0)) / self.rows
r, c = (0, 0)
for ax in subaxes.values():
xpos = l + (c*ax_w) + (c * b_w)
ypos = b + (r*ax_h) + (r * b_h)
if r != self.rows-1:
r += 1
else:
r = 0
c += 1
if not ax is None:
ax.set_position([xpos, ypos, ax_w, ax_h])
[docs]class AdjointLayoutPlot(MPLPlot):
"""
LayoutPlot allows placing up to three Views in a number of
predefined and fixed layouts, which are defined by the layout_dict
class attribute. This allows placing subviews next to a main plot
in either a 'top' or 'right' position.
Initially, a LayoutPlot computes an appropriate layout based for
the number of Views in the AdjointLayout object it has been given, but
when embedded in a NdLayout, it can recompute the layout to
match the number of rows and columns as part of a larger grid.
"""
layout_dict = {'Single': ['main'],
'Dual': ['main', 'right'],
'Triple': ['top', None, 'main', 'right'],
'Embedded Dual': [None, 'main']}
def __init__(self, layout, layout_type, subaxes, subplots, **params):
# The AdjointLayout ViewableElement object
self.layout = layout
# Type may be set to 'Embedded Dual' by a call it grid_situate
self.layout_type = layout_type
self.view_positions = self.layout_dict[self.layout_type]
# The supplied (axes, view) objects as indexed by position
self.subaxes = {pos: ax for ax, pos in zip(subaxes, self.view_positions)}
super(AdjointLayoutPlot, self).__init__(subplots=subplots, **params)
@mpl_rc_context
def initialize_plot(self, ranges=None):
"""
Plot all the views contained in the AdjointLayout Object using axes
appropriate to the layout configuration. All the axes are
supplied by LayoutPlot - the purpose of the call is to
invoke subplots with correct options and styles and hide any
empty axes as necessary.
"""
for pos in self.view_positions:
# Pos will be one of 'main', 'top' or 'right' or None
view = self.layout.get(pos, None)
subplot = self.subplots.get(pos, None)
ax = self.subaxes.get(pos, None)
# If no view object or empty position, disable the axis
if None in [view, pos, subplot]:
ax.set_axis_off()
continue
subplot.initialize_plot(ranges=ranges)
self.adjust_positions()
self.drawn = True
[docs] def adjust_positions(self, redraw=True):
"""
Make adjustments to the positions of subplots (if available)
relative to the main plot axes as required.
This method is called by LayoutPlot after an initial pass
used to position all the Layouts together. This method allows
LayoutPlots to make final adjustments to the axis positions.
"""
checks = [self.view_positions, self.subaxes, self.subplots]
right = all('right' in check for check in checks)
top = all('top' in check for check in checks)
if not 'main' in self.subplots or not (top or right):
return
if redraw:
self.handles['fig'].canvas.draw()
main_ax = self.subplots['main'].handles['axis']
bbox = main_ax.get_position()
if right:
ax = self.subaxes['right']
subplot = self.subplots['right']
if isinstance(subplot, AdjoinedPlot):
subplot_size = subplot.subplot_size
border_size = subplot.border_size
else:
subplot_size = 0.25
border_size = 0.25
ax.set_position([bbox.x1 + bbox.width * border_size,
bbox.y0,
bbox.width * subplot_size, bbox.height])
if isinstance(subplot, GridPlot):
ax.set_aspect('equal')
if top:
ax = self.subaxes['top']
subplot = self.subplots['top']
if isinstance(subplot, AdjoinedPlot):
subplot_size = subplot.subplot_size
border_size = subplot.border_size
else:
subplot_size = 0.25
border_size = 0.25
ax.set_position([bbox.x0,
bbox.y1 + bbox.height * border_size,
bbox.width, bbox.height * subplot_size])
if isinstance(subplot, GridPlot):
ax.set_aspect('equal')
@mpl_rc_context
def update_frame(self, key, ranges=None):
for pos in self.view_positions:
subplot = self.subplots.get(pos)
if subplot is not None:
subplot.update_frame(key, ranges)
def __len__(self):
return max([1 if self.keys is None else len(self.keys), 1])
[docs]class LayoutPlot(GenericLayoutPlot, CompositePlot):
"""
A LayoutPlot accepts either a Layout or a NdLayout and
displays the elements in a cartesian grid in scanline order.
"""
absolute_scaling = param.ObjectSelector(default=False, doc="""
If aspect_weight is enabled absolute_scaling determines whether
axes are scaled relative to the widest plot or whether the
aspect scales the axes in absolute terms.""")
aspect_weight = param.Number(default=0, doc="""
Weighting of the individual aspects when computing the Layout
grid aspects and overall figure size.""")
fig_bounds = param.NumericTuple(default=(0.05, 0.05, 0.95, 0.95), doc="""
The bounds of the figure as a 4-tuple of the form
(left, bottom, right, top), defining the size of the border
around the subplots.""")
tight = param.Boolean(default=False, doc="""
Tightly fit the axes in the layout within the fig_bounds
and tight_padding.""")
tight_padding = param.Parameter(default=3, doc="""
Integer or tuple specifying the padding in inches in a tight layout.""")
hspace = param.Number(default=0.5, doc="""
Specifies the space between horizontally adjacent elements in the grid.
Default value is set conservatively to avoid overlap of subplots.""")
vspace = param.Number(default=0.3, doc="""
Specifies the space between vertically adjacent elements in the grid.
Default value is set conservatively to avoid overlap of subplots.""")
fontsize = param.Parameter(default={'title':16}, allow_None=True)
# Whether to enable fix for non-square figures
v17_layout_format = True
def __init__(self, layout, keys=None, **params):
super(LayoutPlot, self).__init__(layout=layout, keys=keys, **params)
with mpl.rc_context(rc=self.fig_rcparams):
self.subplots, self.subaxes, self.layout = self._compute_gridspec(layout)
if self.top_level:
self.comm = self.init_comm()
self.traverse(lambda x: setattr(x, 'comm', self.comm))
self.traverse(lambda x: attach_streams(self, x.hmap, 2),
[GenericElementPlot])
def _compute_gridspec(self, layout):
"""
Computes the tallest and widest cell for each row and column
by examining the Layouts in the GridSpace. The GridSpec is then
instantiated and the LayoutPlots are configured with the
appropriate embedded layout_types. The first element of the
returned tuple is a dictionary of all the LayoutPlots indexed
by row and column. The second dictionary in the tuple supplies
the grid indicies needed to instantiate the axes for each
LayoutPlot.
"""
layout_items = layout.grid_items()
layout_dimensions = layout.kdims if isinstance(layout, NdLayout) else None
layouts = {}
col_widthratios, row_heightratios = {}, {}
for (r, c) in self.coords:
# Get view at layout position and wrap in AdjointLayout
_, view = layout_items.get((c, r) if self.transpose else (r, c), (None, None))
if isinstance(view, NdLayout):
raise SkipRendering("Cannot render NdLayout nested inside a Layout")
layout_view = view if isinstance(view, AdjointLayout) else AdjointLayout([view])
layouts[(r, c)] = layout_view
# Compute shape of AdjointLayout element
layout_lens = {1:'Single', 2:'Dual', 3:'Triple'}
layout_type = layout_lens[len(layout_view)]
# Get aspects
main = layout_view.main
main = main.last if isinstance(main, HoloMap) else main
main_options = self.lookup_options(main, 'plot').options if main else {}
if main and not isinstance(main_options.get('aspect', 1), basestring):
main_aspect = np.nan if isinstance(main, Empty) else main_options.get('aspect', 1)
main_aspect = self.aspect_weight*main_aspect + 1-self.aspect_weight
else:
main_aspect = np.nan
if layout_type in ['Dual', 'Triple']:
el = layout_view.get('right', None)
eltype = type(el)
if el and eltype in MPLPlot.sideplots:
plot_type = MPLPlot.sideplots[type(el)]
ratio = 0.6*(plot_type.subplot_size+plot_type.border_size)
width_ratios = [4, 4*ratio]
else:
width_ratios = [4, 1]
else:
width_ratios = [4]
inv_aspect = 1./main_aspect if main_aspect else np.NaN
if layout_type in ['Embedded Dual', 'Triple']:
el = layout_view.get('top', None)
eltype = type(el)
if el and eltype in MPLPlot.sideplots:
plot_type = MPLPlot.sideplots[type(el)]
ratio = 0.6*(plot_type.subplot_size+plot_type.border_size)
height_ratios = [4*ratio, 4]
else:
height_ratios = [1, 4]
else:
height_ratios = [4]
if not isinstance(main_aspect, (basestring, type(None))):
width_ratios = [wratio * main_aspect for wratio in width_ratios]
height_ratios = [hratio * inv_aspect for hratio in height_ratios]
layout_shape = (len(width_ratios), len(height_ratios))
# For each row and column record the width and height ratios
# of the LayoutPlot with the most horizontal or vertical splits
# and largest aspect
prev_heights = row_heightratios.get(r, (0, []))
if layout_shape[1] > prev_heights[0]:
row_heightratios[r] = [layout_shape[1], prev_heights[1]]
row_heightratios[r][1].append(height_ratios)
prev_widths = col_widthratios.get(c, (0, []))
if layout_shape[0] > prev_widths[0]:
col_widthratios[c] = (layout_shape[0], prev_widths[1])
col_widthratios[c][1].append(width_ratios)
col_splits = [v[0] for __, v in sorted(col_widthratios.items())]
row_splits = [v[0] for ___, v in sorted(row_heightratios.items())]
widths = np.array([r for col in col_widthratios.values()
for ratios in col[1] for r in ratios])/4
wr_unnormalized = compute_ratios(col_widthratios, False)
hr_list = compute_ratios(row_heightratios)
wr_list = compute_ratios(col_widthratios)
# Compute the number of rows and cols
cols, rows = len(wr_list), len(hr_list)
wr_list = [r if np.isfinite(r) else 1 for r in wr_list]
hr_list = [r if np.isfinite(r) else 1 for r in hr_list]
width = sum([r if np.isfinite(r) else 1 for r in wr_list])
yscale = width/sum([(1/v)*4 if np.isfinite(v) else 4 for v in wr_unnormalized])
if self.absolute_scaling:
width = width*np.nanmax(widths)
xinches, yinches = None, None
if not isinstance(self.fig_inches, (tuple, list)):
xinches = self.fig_inches * width
yinches = xinches/yscale
elif self.fig_inches[0] is None:
xinches = self.fig_inches[1] * yscale
yinches = self.fig_inches[1]
elif self.fig_inches[1] is None:
xinches = self.fig_inches[0]
yinches = self.fig_inches[0] / yscale
if xinches and yinches:
self.handles['fig'].set_size_inches([xinches, yinches])
self.gs = gridspec.GridSpec(rows, cols,
width_ratios=wr_list,
height_ratios=hr_list,
wspace=self.hspace,
hspace=self.vspace)
# Situate all the Layouts in the grid and compute the gridspec
# indices for all the axes required by each LayoutPlot.
gidx = 0
layout_count = 0
tight = self.tight
collapsed_layout = layout.clone(shared_data=False, id=layout.id)
frame_ranges = self.compute_ranges(layout, None, None)
frame_ranges = OrderedDict([(key, self.compute_ranges(layout, key, frame_ranges))
for key in self.keys])
layout_subplots, layout_axes = {}, {}
for r, c in self.coords:
# Compute the layout type from shape
wsplits = col_splits[c]
hsplits = row_splits[r]
if (wsplits, hsplits) == (1,1):
layout_type = 'Single'
elif (wsplits, hsplits) == (2,1):
layout_type = 'Dual'
elif (wsplits, hsplits) == (1,2):
layout_type = 'Embedded Dual'
elif (wsplits, hsplits) == (2,2):
layout_type = 'Triple'
# Get the AdjoinLayout at the specified coordinate
view = layouts[(r, c)]
positions = AdjointLayoutPlot.layout_dict[layout_type]
# Create temporary subplots to get projections types
# to create the correct subaxes for all plots in the layout
_, _, projs = self._create_subplots(layouts[(r, c)], positions,
None, frame_ranges, create=False)
gidx, gsinds = self.grid_situate(gidx, layout_type, cols)
layout_key, _ = layout_items.get((r, c), (None, None))
if isinstance(layout, NdLayout) and layout_key:
layout_dimensions = OrderedDict(zip(layout_dimensions, layout_key))
# Generate the axes and create the subplots with the appropriate
# axis objects, handling any Empty objects.
obj = layouts[(r, c)]
empty = isinstance(obj.main, Empty)
if view.main is None:
continue
elif empty:
obj = AdjointLayout([])
elif not view.traverse(lambda x: x, [Element]):
self.warning('%s is empty, skipping subplot.' % obj.main)
continue
elif self.transpose:
layout_count = (c*self.rows+(r+1))
else:
layout_count += 1
subaxes = [plt.subplot(self.gs[ind], projection=proj)
for ind, proj in zip(gsinds, projs)]
subplot_data = self._create_subplots(obj, positions,
layout_dimensions, frame_ranges,
dict(zip(positions, subaxes)),
num=0 if empty else layout_count)
subplots, adjoint_layout, _ = subplot_data
layout_axes[(r, c)] = subaxes
# Generate the AdjointLayoutsPlot which will coordinate
# plotting of AdjointLayouts in the larger grid
plotopts = self.lookup_options(view, 'plot').options
layout_plot = AdjointLayoutPlot(adjoint_layout, layout_type, subaxes, subplots,
fig=self.handles['fig'], **plotopts)
layout_subplots[(r, c)] = layout_plot
tight = not any(type(p) is GridPlot for p in layout_plot.subplots.values()) and tight
if layout_key:
collapsed_layout[layout_key] = adjoint_layout
# Apply tight layout if enabled and incompatible
# GridPlot isn't present.
if tight:
if isinstance(self.tight_padding, (tuple, list)):
wpad, hpad = self.tight_padding
padding = dict(w_pad=wpad, h_pad=hpad)
else:
padding = dict(w_pad=self.tight_padding, h_pad=self.tight_padding)
self.gs.tight_layout(self.handles['fig'], rect=self.fig_bounds, **padding)
return layout_subplots, layout_axes, collapsed_layout
[docs] def grid_situate(self, current_idx, layout_type, subgrid_width):
"""
Situate the current AdjointLayoutPlot in a LayoutPlot. The
LayoutPlot specifies a layout_type into which the AdjointLayoutPlot
must be embedded. This enclosing layout is guaranteed to have
enough cells to display all the views.
Based on this enforced layout format, a starting index
supplied by LayoutPlot (indexing into a large gridspec
arrangement) is updated to the appropriate embedded value. It
will also return a list of gridspec indices associated with
the all the required layout axes.
"""
# Set the layout configuration as situated in a NdLayout
if layout_type == 'Single':
start, inds = current_idx+1, [current_idx]
elif layout_type == 'Dual':
start, inds = current_idx+2, [current_idx, current_idx+1]
bottom_idx = current_idx + subgrid_width
if layout_type == 'Embedded Dual':
bottom = ((current_idx+1) % subgrid_width) == 0
grid_idx = (bottom_idx if bottom else current_idx)+1
start, inds = grid_idx, [current_idx, bottom_idx]
elif layout_type == 'Triple':
bottom = ((current_idx+2) % subgrid_width) == 0
grid_idx = (bottom_idx if bottom else current_idx) + 2
start, inds = grid_idx, [current_idx, current_idx+1,
bottom_idx, bottom_idx+1]
return start, inds
def _create_subplots(self, layout, positions, layout_dimensions, ranges, axes={}, num=1, create=True):
"""
Plot all the views contained in the AdjointLayout Object using axes
appropriate to the layout configuration. All the axes are
supplied by LayoutPlot - the purpose of the call is to
invoke subplots with correct options and styles and hide any
empty axes as necessary.
"""
subplots = {}
projections = []
adjoint_clone = layout.clone(shared_data=False, id=layout.id)
subplot_opts = dict(show_title=False, adjoined=layout)
for pos in positions:
# Pos will be one of 'main', 'top' or 'right' or None
view = layout.get(pos, None)
ax = axes.get(pos, None)
if view is None or not view.traverse(lambda x: x, [Element]):
projections.append(None)
continue
# Determine projection type for plot
projections.append(self._get_projection(view))
if not create:
continue
# Customize plotopts depending on position.
plotopts = self.lookup_options(view, 'plot').options
# Options common for any subplot
override_opts = {}
sublabel_opts = {}
if pos == 'main':
own_params = self.get_param_values(onlychanged=True)
sublabel_opts = {k: v for k, v in own_params
if 'sublabel_' in k}
elif pos == 'right':
right_opts = dict(invert_axes=True,
xaxis=None)
override_opts = dict(subplot_opts, **right_opts)
elif pos == 'top':
top_opts = dict(yaxis=None)
override_opts = dict(subplot_opts, **top_opts)
# Override the plotopts as required
plotopts = dict(sublabel_opts, **plotopts)
plotopts.update(override_opts, fig=self.handles['fig'])
vtype = view.type if isinstance(view, HoloMap) else view.__class__
if isinstance(view, GridSpace):
plotopts['create_axes'] = ax is not None
plot_type = Store.registry['matplotlib'][vtype]
if pos != 'main' and vtype in MPLPlot.sideplots:
plot_type = MPLPlot.sideplots[vtype]
num = num if len(self.coords) > 1 else 0
subplots[pos] = plot_type(view, axis=ax, keys=self.keys,
dimensions=self.dimensions,
layout_dimensions=layout_dimensions,
ranges=ranges, subplot=True,
uniform=self.uniform, layout_num=num,
renderer=self.renderer, **plotopts)
if isinstance(view, (Element, HoloMap, Collator, CompositeOverlay)):
adjoint_clone[pos] = subplots[pos].hmap
else:
adjoint_clone[pos] = subplots[pos].layout
return subplots, adjoint_clone, projections
@mpl_rc_context
def initialize_plot(self):
key = self.keys[-1]
ranges = self.compute_ranges(self.layout, key, None)
for subplot in self.subplots.values():
subplot.initialize_plot(ranges=ranges)
# Create title handle
title_obj = None
title = self._format_title(key)
if self.show_title and len(self.coords) > 1 and title:
title_obj = self.handles['fig'].suptitle(title, **self._fontsize('title'))
self.handles['title'] = title_obj
self.handles['bbox_extra_artists'] += [title_obj]
fig = self.handles['fig']
if (not self.traverse(specs=[GridPlot]) and not isinstance(self.fig_inches, tuple)
and self.v17_layout_format):
traverse_fn = lambda x: x.handles.get('bbox_extra_artists', None)
extra_artists = list(chain(*[artists for artists in self.traverse(traverse_fn)
if artists is not None]))
fix_aspect(fig, self.rows, self.cols,
title_obj, extra_artists,
vspace=self.vspace*self.fig_scale,
hspace=self.hspace*self.fig_scale)
colorbars = self.traverse(specs=[lambda x: hasattr(x, 'colorbar')])
for cbar_plot in colorbars:
if cbar_plot.colorbar:
cbar_plot._draw_colorbar(redraw=False)
adjoined = self.traverse(specs=[AdjointLayoutPlot])
for adjoined in adjoined:
if len(adjoined.subplots) > 1:
adjoined.adjust_positions(redraw=False)
return self._finalize_axis(None)
class AdjoinedPlot(DimensionedPlot):
aspect = param.Parameter(default='auto', doc="""
Aspect ratios on SideHistogramPlot should be determined by the
AdjointLayoutPlot.""")
bgcolor = param.Parameter(default=(1, 1, 1, 0), doc="""
Make plot background invisible.""")
border_size = param.Number(default=0.25, doc="""
The size of the border expressed as a fraction of the main plot.""")
show_title = param.Boolean(default=False, doc="""
Titles should be disabled on all SidePlots to avoid clutter.""")
subplot_size = param.Number(default=0.25, doc="""
The size subplots as expressed as a fraction of the main plot.""")
show_xlabel = param.Boolean(default=False, doc="""
Whether to show the x-label of the plot. Disabled by default
because plots are often too cramped to fit the title correctly.""")