02 GroupBy

This notebook uses the Pandas groupby-aggregate and groupby-apply on scalable Dask dataframes. It will discuss both common use and best practices.

Start Dask Client for Dashboard

Starting the Dask Client is optional. It will provide a dashboard which is useful to gain insight on the computation.

The link to the dashboard will become visible when you create the client below. We recommend having it open on one side of your screen while using your notebook on the other side. This can take some effort to arrange your windows, but seeing them both at the same is very useful when learning.

In [1]:
from dask.distributed import Client
client = Client(n_workers=1, threads_per_worker=4, processes=False, memory_limit='2GB')
client
Out[1]:

Client

Cluster

  • Workers: 1
  • Cores: 4
  • Memory: 2.00 GB

Artifical dataset

We create an artificial timeseries dataset to help us work with groupby operations

In [2]:
import dask
df = dask.datasets.timeseries()
df
Out[2]:
Dask DataFrame Structure:
id name x y
npartitions=30
2000-01-01 int64 object float64 float64
2000-01-02 ... ... ... ...
... ... ... ... ...
2000-01-30 ... ... ... ...
2000-01-31 ... ... ... ...
Dask Name: make-timeseries, 30 tasks

This dataset is small enough to fit in the cluster's memory, so we persist it now.

You would skip this step if your dataset becomes too large to fit into memory.

In [3]:
df = df.persist()

Groupby Aggregations

Dask dataframes implement a commonly used subset of the Pandas groupby API (see Pandas Groupby Documentation .

We start with groupby aggregations. These are generally fairly efficient, assuming that the number of groups is small (less than a million).

In [4]:
df.groupby('name').x.mean().compute()
Out[4]:
name
Alice       0.002012
Bob         0.000005
Charlie    -0.003659
Dan        -0.000925
Edith      -0.001901
Frank      -0.000123
George      0.000711
Hannah     -0.000900
Ingrid      0.002087
Jerry      -0.001365
Kevin      -0.002334
Laura       0.000233
Michael     0.000815
Norbert     0.000734
Oliver      0.003670
Patricia   -0.000129
Quinn       0.002248
Ray         0.002045
Sarah       0.001693
Tim        -0.001177
Ursula     -0.002949
Victor      0.001702
Wendy       0.000547
Xavier      0.000750
Yvonne      0.001213
Zelda       0.000647
Name: x, dtype: float64

Performance will depend on the aggregation you do (mean vs std), the key on which you group (name vs id), and the number of total groups

In [5]:
%time _ = df.groupby('id').x.mean().compute()
CPU times: user 276 ms, sys: 12 ms, total: 288 ms
Wall time: 241 ms
In [6]:
%time _ = df.groupby('name').x.mean().compute()
CPU times: user 588 ms, sys: 16 ms, total: 604 ms
Wall time: 511 ms
In [7]:
%time df.groupby('name').agg({'x': ['mean', 'std'], 'y': ['mean', 'count']}).compute().head()
CPU times: user 796 ms, sys: 40 ms, total: 836 ms
Wall time: 783 ms
Out[7]:
x y
mean std mean count
name
Alice 0.002012 0.575891 -0.000654 99665
Bob 0.000005 0.578048 0.000492 99388
Charlie -0.003659 0.577931 -0.000097 99641
Dan -0.000925 0.576218 -0.000398 99569
Edith -0.001901 0.577238 -0.002307 99847

This is the same as with Pandas. Generally speaking, Dask.dataframe groupby-aggregations are roughly same performance as Pandas groupby-aggregations, just more scalable.

You can read more about Pandas' common aggregations in the Pandas documentation .

Many groups

By default groupby-aggregations (like groupby-mean or groupby-sum) return the result as a single-partition Dask dataframe. Their results are usually quite small, so this is usually a good choice.

However, sometimes people want to do groupby aggregations on many groups (millions or more). In these cases the full result may not fit into a single Pandas dataframe output, and you may need to split your output into multiple partitions. You can control this with the split_out= parameter

In [8]:
# Computational graph of a single output aggregation (for a small number of groups, like 1000)
df.groupby('name').x.mean().visualize(node_attr={'penwidth': '6'})
Out[8]:
In [9]:
# Computational graph of an aggregation to four outputs (for a larger number of groups, like 1000000)
df.groupby('id').x.mean(split_out=4).visualize(node_attr={'penwidth': '6'})
Out[9]:

Groupby Apply

Groupby-aggregations are generally quite fast because they can be broken down easily into well known operations. The data doesn't have to move around too much and we can just pass around small intermediate values across the network.

For some operations however the function to be applied requires all data from a given group (like every record of someone named "Alice"). This will force a great deal of communication and be more expensive, but is still possible with the Groupby-apply method. This should be avoided if a groupby-aggregation works.

In the following example we train a simple Scikit-Learn machine learning model on every person's name.

In [10]:
from sklearn.linear_model import LinearRegression

def train(partition):
    est = LinearRegression()
    est.fit(partition[['x', 'id']].values, partition.y.values)
    return est
In [11]:
%time df.groupby('name').apply(train, meta=object).compute().sort_index()
CPU times: user 4.96 s, sys: 976 ms, total: 5.93 s
Wall time: 5.06 s
Out[11]:
name
Alice       LinearRegression(copy_X=True, fit_intercept=Tr...
Bob         LinearRegression(copy_X=True, fit_intercept=Tr...
Charlie     LinearRegression(copy_X=True, fit_intercept=Tr...
Dan         LinearRegression(copy_X=True, fit_intercept=Tr...
Edith       LinearRegression(copy_X=True, fit_intercept=Tr...
Frank       LinearRegression(copy_X=True, fit_intercept=Tr...
George      LinearRegression(copy_X=True, fit_intercept=Tr...
Hannah      LinearRegression(copy_X=True, fit_intercept=Tr...
Ingrid      LinearRegression(copy_X=True, fit_intercept=Tr...
Jerry       LinearRegression(copy_X=True, fit_intercept=Tr...
Kevin       LinearRegression(copy_X=True, fit_intercept=Tr...
Laura       LinearRegression(copy_X=True, fit_intercept=Tr...
Michael     LinearRegression(copy_X=True, fit_intercept=Tr...
Norbert     LinearRegression(copy_X=True, fit_intercept=Tr...
Oliver      LinearRegression(copy_X=True, fit_intercept=Tr...
Patricia    LinearRegression(copy_X=True, fit_intercept=Tr...
Quinn       LinearRegression(copy_X=True, fit_intercept=Tr...
Ray         LinearRegression(copy_X=True, fit_intercept=Tr...
Sarah       LinearRegression(copy_X=True, fit_intercept=Tr...
Tim         LinearRegression(copy_X=True, fit_intercept=Tr...
Ursula      LinearRegression(copy_X=True, fit_intercept=Tr...
Victor      LinearRegression(copy_X=True, fit_intercept=Tr...
Wendy       LinearRegression(copy_X=True, fit_intercept=Tr...
Xavier      LinearRegression(copy_X=True, fit_intercept=Tr...
Yvonne      LinearRegression(copy_X=True, fit_intercept=Tr...
Zelda       LinearRegression(copy_X=True, fit_intercept=Tr...
dtype: object

Right click to download this notebook from GitHub.